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The traveling-wave method is used to obtain a solution of the system of heat ~ and 
mass-transfer equations, which is analyzed at small times. 

In analyzing heat and moisture transfer occurring rapidly in conditions of external shock 
perturbation, account must be taken of the finite rate of heat and mass transfer. In many 
cases, it is difficult to study such processes in which phase transition occurs, because of 
the lack of kinetic equations describing the mechanism of new-phase formation close to the 
phase boundary at small times. 

Below, the problem of highly intense heat and mass transfer is solved in the case when 
the values of the potentials and flux densities at the motionless thermal boundary are known. 

the problem is as follows. On the basis of the system of equations The formulation of 
inside the phase [i] 

O2T i aT  O~T au 

"q at". ' at ax ~ at ' ( 1 )  

O~u Ou a~u O~ T --=am-- ~ , (2) 
~="-~-i- + at  Ox ~ ax ~ 

the values of the potentials and gradients at the motionless boundary 

aT (0, t) = A~(t); t~> O, T (O, t) = A~ (t); 

Ou u(O, t)==Bl(t); %-~x (0, t)=B~(/), t~O, 

(3) 

(4) 

the heat and mass balance conditions at the motionless boundary [2] 

OT 
0--~ (R (t), t) = ? (z~R" -'r- R') + qT, ( 5 ) 

a___~u (R (t), t) = O ('c2R" + R') + qm (6)  
Ox 

and the conditions on the initial position of the interphase boundary 

R (0) = Ro; R'  (0) = Ro, 

it is required to calculate the fields T(x; t) and u(x; t) and the law of motion of the mobile 
boundary x = R(t). 

The system in Eqs. (i) and (2) is transformed so that it may be written in matrix form. 
Equation (2) is multiplied by a fixed number gl # 0 and added to Eq. (I). Analogously, Eq. 
(2) is multiplied by g2 # gl (g2 ~ 0) and added to Eq. (I), to obtain the second equation 
of the system. The numbers gl and g2 are chosen so that the coefficients of 

O2T a~u a~T a~u aT  au 

ax ~ Ox ~ ' at ~ at ~ at at 
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are nonzero in each equation obtained. 
tained is 

at-- 7- 

For example, taking gx = i, g2 = -I, the system ob- 

O2 

+ "~'g~ ~ + (g~ + =) T - -  &~a~ u (x, t ) - -  0 (i =:1,  2). 
(7 )  

Introducing the notation 

an  = a21 = "~1; Ct12 -~- glT2; 022. : g 2 " ~ $ ;  311 : b21 : I; 

hi2 = (gt + ~); b m =  g., + ~z;- -cn=a r + ~igl; 

--c21 = a r + f~g2; ct2 = - -g la , . ;  c~2 = g~a,,,. 

Eq. (7) may be written in matrix form 

A N = Q ,  

where 
/ a  a~ _ O a S a 2 o o 2 ,~ 
( 11-'~'31-011~ "-'1-Cll OX $ a12 Ot-----;-+Ox2--~-+cl,. Ox--- T ) A = | 0 3 . . 0 0 2 O' O 0 ~ 

0,--- 7 0 7  

(8) 

(9) 

(lO) 

(o) 
u ( x , t )  , 0 . =  o ( n )  

Note that Eq. (9) is more general in form than the initial system. 
(9) is sought in the form of a series 

N = ~ F, ,X , .  
n=O 

The solution of Eq. 

(12 )  

where 

F.= ( r,m(t) r.n(t) ) 
r,,.(t) r.,,(t) 

X,~ = (2n)t 
X2n+ t 

(2n + 1)1 

(13)  

Substituting Eqs. (12) and (13) into Eq. (9) and comparing the coefficients of the same 
powers of x, a recurrence relation for the unknown functions is obtained 

Fn+l = DFn, (14)  

where the elements dij of the matrix D, with the structure dij = Aija2/at 2 + Bija/at, take 
the specific form 

c~ a~ t ~ + I c~ b~ 1-~-'! : c,1 c~ I 

\ lCu  al~, ~ + cn b12 : cm czzl  

(15) 
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Hence, 

F~ =: D~Fo, 

and F o i s  e x p r e s s e d  i n  t e r m s  o f  T(O,  t ) ,  u ( O ,  t ) ,  T x ' ( O ,  

{T(O, t) T~(O,t)~ 
Fo I ) \u  (0, t) Ux (0, t) 

T h u s ,  t h e  s o l u t i o n  o f  Eq.  ( 9 )  t a k e s  t h e  f o r m  

t), Ux'(O, t) as follows 

(16) 

(17) 

l Xin 1 
u(x, t) ~= \d21 d2,/  \u(O, t) u~(O, t) x~n+i 

(2n -6 l)l 

Since the matrix D is formed by differentiation operators, it is necessary to specify 
the conditions under which the series in Eq. (18) converges to its sum. Attention is con- 
fined here to the case when the functions T(0, t), Tx'(0, t), u(0, t), and Ux'(0, t) are 
approximated by polynomials or finite sums of sines, cosines, exponentials. 

In these cases, it is obvious that the series in Eq. (18) may be turned into a sum. 

One of the balance Eqs. (5) and (6) may be used to determine R(t). 

One important particular case of the solution obtained corresponding qualitatively to 
the classical solution of th Stefan problem, which is often used in practice, is considered 
here [3, 4]. As is known, the Stefen solutions of separate thermal and water-conduction 
problems are expressed in terms of the error function erf(z) 

T (x, t) = To -6 Po erf ( ~ ] / 4 a y ) ,  

u (x, t) = Uo -6 [0 erf ( Z ] / 4 % t  ), ( 19 ) 

R (0 = & V L  

They correspond to the boundary function 

T(0 ,  t) = T o = cons%, u(0,  t) ---- u o = const, 
(2o) 

T'~ (0, t) = po/]/ zmlt , u'~ (0, t) = [o/]/aad �9 

T h i s  i s  t h e  s o l u t i o n  o f  t h e  i n a d e q u a t e l y  d e s c r i b e d  p r o c e s s  a t  s m a l l  t i m e s .  I n  f a c t ,  
T x ' ( O ,  t )  + ~ and  U x ' ( O ,  t )  + ~ a s  t + O; t h e  f r o n t  v e l o c i t y  b e h a v e s  i n  t h e  same way:  
R'(t) + ~ as t ~ 0. 

With constant T(0, t) = T o = const, u(0, t) = u 0 = const. Let Tx'(0, t) = q0x exp (-~t), 
Ux'(0, t) = q02 exp (-~t). The values of the gradients begin to change from the value of 
greatest modulus and, decreasing smoothly, tends to zero at t + ~, i.e., behaves qualitatively 
in the same way as the solution in Eq. (19). 

Substituting the boundary values into Eq. (18) leads to the relations 

T (x, t) = To -6 exp ( - -  q~t) (qol sin ((q~Bn - -  WLAn) 1/2x): 

: (qgB~ - -  q~An)l / 2 -6 qo~ sin ((~B12 --  ~2A12) I / Zx): ( 21 ) 

: (q)B12 _ q~iAx~ ) 1 / 2), 

u (x, t) = Uo -6 exp ( - -  q~t) (qol sin ((qDBiI - -  q~A~l) t ~ix) : 
1/2 (22) 

: (epBzl - -  ~A~z) 1/2 .6 go2 sin ((q~B22 - -  q~ A~) x) : 

: (~B~ --  cp~Aff)l/2). 

Neglecting the relaxation time on the right-hand side of Eq. (5), i.e., taking the heat 
finiteness of the heat-propagation velocity into account only inside the phase, the following 
equation is obtained for determining R(t) 

exp ( - -  qgt) (%1 cos ((q~Bn - -  qofA11) 1/2R (t)) ~- ( 23 ) 

6 qoz cos ((q~B12 - -  ~9~A~2)u~R (t))) := yR' .  
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To simplify the subsequent computations, attention is confined to the case when ~ satisfies 
the relation 

(PBll -- ~0zAII : ~gBls -- ~zA1z == ~. ( 24 ) 

Then the following expression is obtained for R(t) when R(0) = 0 

R( t )=2 (a r c tg ( exp (  (q~ + q~ ~ ( 1 -  exp ( -  ) ) ) - - 4 ) "  (25) 

In contrast to the classical solution R(t) = &J~, for which R(~) = | the function R(t) 
determined by Eq. (25) is finite at infinity 

The values of the velocities in the solutions of Eqs. (19) and (24) as t ~ ~ are qualita- 
tively identical; they both tend to zeros_ initially, however, they are significantly different. 
In the solution in Eq. (19), R'(t) - i//t ~ ~ as t + 0. The solution in Eq. (25) corresponds 
to a finite value of R' (0) 

R' (0) = '~ (qo~ + qo~)- 

In addition, in contrastto the classical case, when Ti # 0, the problem in Eqs. (1)-(6) leads 
to stable solutions with respect to small changes in the input data. 

Thus, as noted in [2, 5, 6], the parameters T i play the roleof "natural regularization 
parameters." The method of obtaining the required error as a function of the errors of the 
initial boundary functions was described in [7]. 

NOTATION 

TI, T~, relaxation times of the transfer processes; T, temperature; u, moisture content; 
a t , thermal diffusivity; am, diffusion coefficient of moisture; 8 = am6; 6, thermogradient 
coefficient; =, quantity proportional to the ratio of the specific heat of phase transition 
and the specific heat; 7, ratio of the specific heat of phase transition to the product of 
the thermal diffusivity and the specific heat; R(t), law of motion of phase-transition front. 
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